Sideway
output.to from Sideway
Draft for Information Only

Content

  Primality
   The Porperty of Mann and Shanks (1972)[1,3]
   The Prime Power Dividing a Factorial (1808)[1]
   The Prime Power Dividing a Binomial Coefficient (1852)[1]

Primality

Prime numbers are natural numbers, e.g. 2, 3, 5, 7,..., which can only be divided by 1 and itself. Although the way to recognize the primality of a natural numbe is very simple, there is difficulty of distinguishing prime numbers from composite numbers when natural numbers become very large.

The Porperty of Mann and Shanks (1972)[1,3]

Another property of prime related to binomial coeffiecent is the property of Mann and Shanks characterized by the divisibility of the binomial coefficients relatived to a prime number p in the specified manner. Instead of focusing on one individual set of binomial coefficients, Mann and Shanks checks the divisibility of multiple sets of the binomial coefficients relatived to a prime number p. In order to visualize the relationship, Mann and Shanks tabulate the Pascal's Arithmetical Triagle by shifting the starting column of each row two places to the right relative to the prievious row.  In other words, the row n of binomial coefficient with power index n  is placed between columns 2n and 3n inclusive. Column number p is a prime number if and only if row number k divides (k
p-2k
)
for every largest integer k such that  ⌊(p+2)/3⌋⌊(p+2)/3⌋+1,...,⌊p/2⌋.

n\p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
0 1                                                                
1     1 1                                                          
2         1 2 1                                                    
3             1 3 3 1                                              
4                 1 4 6 4 1                                        
5                     1 5 10 10 5 1                                  
6                         1 6 15 20 15 6 1                            
7                             1 7 21 35 35 21 7 1                      
8                                 1 8 28 56 70 56 28 8 1                
9                                     1 9 36 84 126 126 84 36 9 1          
10                                         1 10 45 120 210 252 210 120 45 10 1    
11                                             1 11 55 165 330 462 462 330 165 55  
12                                                 1 12 66 220 495 792 924 792  
13                                                     1 13 78 286 715 1287  
14                                                         1 14 91 364  
15                                                             1 15  
                                                                   

The binomial coefficients for each row in term of row number n is (n
i
)
where k=0,1,2,...n. Or in term of column number p is (p/2
i
)
where i=0,1,2,...p/2., since p/2=n. From the table, the only possible column p such that the whole column of the binomial coefficients are divisible by the first row number index is equal to n*2+n-1=p with binomial coefficient (n
n-1
)
 or m*2+m-2=p with binomial coefficient (m
m-2
)
 for n,m>2. In other words, the first row number is equal k=⌊(p+2)/3⌋ and the binomial coefficient is equal to (k
p-2k
)
. Similarly, the possible whole column of the binomial coefficients are divisible by the last row number index is equal to n*2+1=p with binomial coefficient (n
1
)
. In other words the last row number index n is equal to n=(p-1)/2 or k=⌊(p)/2⌋. the binomial coefficient is equal to (k
p-2k
)
, Therefore the property can be specified as before.

 IMAGE...

For prime number p greater than 3, the row number index p can be expressed as p=6k+1=3n-2 or p=6k-1=3n-1. Consider p=6k+1=3n-2, imply n=2k+1 and the corresponding binomial coefficients in the column is (2k+i
3i-1
)
. where the row index i=1,2,...,k. Since the two binomial coefficients of successive rows are (2k+m-1
3m-4
)
, and (2k+m
3m-1
)
), imply  (2k+m-1
3m-2
)(2k+m)
=(2k+m
3m-1
)(3m-1)
. If row number 2k+m does not divide the binomial coefficient, then gcd(2k+m,3m-1)>1. Therefore gcd(6k+3m,3m-1)>1 , imply (6k+1,3m-1) or (p,3m-1)>1. In other words p is divisible and p is not a prime number. Therefore if p is a prime number, each binomial coefficients in the same column must be divisible by its row number. Similarly, if p=6k-1=3n-1, imply n=2k and the corresponding binomial coefficients in the column is (2k+i
3i+1
)
. where the row index i=0,1,2,...,k-1. Since the two binomial coefficients of successive rows are (2k+m-1
3m-2
)
, and (2k+m
3m+1
)
), imply  (2k+m-1
3m
)(2k+m)
=(2k+m
3m+1
)(3m+1)
. If row number 2k+m does not divide the binomial coefficient, then gcd(2k+m,3m+1)>1. Therefore gcd(6k+3m,3m+1)>1 , imply (6k-1,3m+1) or (p,3m+1)>1. In other words p is divisible by 3m+1 and p is not a prime number. Therefore if p is a prime number, each binomial coefficients in the same column must be divisible by its row number.

 IMAGE...

Since all even column number p have a non divisible binomial coefficients for  (p
0
)
, all even column number p is not a prime. For all odd composite column number p=s(2t+1) where s is prime factor and t≥1. Let row number n=st where n does not divide the binomial coefficient at column p. The binomial coefficient at n row and p column is (st
s
)=t(st-1
s-1
)
, therefore ther row number n=pk does not divide the binomial coefficient.

The Prime Power Dividing a Factorial (1808)[1]

In 1808, Legendre determined the exact prime power pm that divideds a factorial a! and m can also be expressed in terms of the p-adic development of a, that is  ((a-(a0+a1+a2+a3+...+ak))/(p-1). By definition a!=pmb, where p∤b. Let a>p, then a=q1p+r1 with 0≤q1, 0≤r1<p. Imply q1=⌊a/p⌋. For multiples of p not bigger than a, i.e. p,2p,...q1p≤a, then by definition, pq1(q1!)=pmc where p∤c as a is divided into q1 segments. Let m=q1+n1, then  pq1(q1!)=pq1+n1c or pn1 divides q1!. For each 1≤i≤k, there are ⌊q1/pi⌋-⌊q1/pi+1⌋ numbers between 1 and q1 is divided by the greatest power i of p only. So the greatest power of p dividing q1! is k
i=1
i(⌊q1/pi⌋-⌊q1/pi+1⌋)=∑ k
i=1
(⌊q1/pi⌋)
. Therefore n1 is equal to q1/p1⌋+⌊q1/p2⌋+.... Since q1/pi⌋=⌊⌊a/p/pi⌋=⌊a/pi+1, imply  n1=a/p2⌋+⌊a/p3⌋+⌊a/p4⌋+.... From m=q1+n1, imply m=⌊a/p⌋+n1=a/p1⌋+⌊a/p2⌋+⌊a/p3⌋+⌊a/p4⌋+....

 IMAGE...

Let a=akpk+...+a1p+a0. where pk≤a<pk+1 and 0≤ai≤p-1 for i=0,1,...,k.   Then a/p⌋=akpk-1+...+a2p+a1, a/p2⌋=akpk-2+...+a3p+a2, ..., a/pk⌋=ak, Therefore m=∑ k
i=1
(⌊q1/pi⌋)
can be expressed as (akpk-1+...+a2p+a1)+(akpk-2+...+a3p+a2)+(akpk-3+...+a4p+a3)+...+(ak)a1+a2(p+1)+a3(p2+p+1)+...+(ak)(pk-1+pk-2+...+p+1)= ((a1(p-1)+a2(p2-1)+a3(p3-1)+...+ak(pk-1))/(p-1)((a1p+a2p2+a3p3+...+akpk)-(a1+a2+a3+...+ak))/(p-1)= (a-(a0+a1+a2+a3+...+ak))/(p-1). and is equal to the p-adic valuation of a!

 IMAGE...

The Prime Power Dividing a Binomial Coefficient (1852)[1]

In 1852, Kummer extends the Legendre's result to determine the exact prime power pm that divideds a binomial coefficient  (a+b
a
)=(a+b)!/a!b!
, where a≥1,b≥1. Similar to Legendre, Let a=atpt+...+a1p+a0. and b=btpt+...+b1p+b0. where 0≤ai≤p-1 and 0≤bi≤p-1 for i=0,1,...,t. with either at≠0 or bt≠0. Let Sa=∑ t
i=0
ai
, Sb=∑ t
i=0
bi
be the sums of p-adic digits of a, b. Let ci be 0≤ci≤p-1 and εi=0 or 1. such that a0+b00p+c0, ε0+a1+b11p+c1,  ε1+a2+b22p+c2, ...,  εt-1+at+bttp+ct. Therefore c0=a0+b00p, c10+a1+b11p,  c21+a2+b22p, ...,  ctt-1+at+bttp. Or  (c0+c1+c2+...+ct)= ((a0+a1+a2+...+at)+(b0+b1+b2+...+bt))+(ε01+...+εt-1)-(ε0p+ε1p+ε2p+...+εtp)= ((a0+a1+a2+...+at)+(b0+b1+b2+...+bt))+(ε01+...+εt-1t)-(ε0p+ε1p+ε2p+...+εtp)-εt=  ((a0+a1+a2+...+at)+(b0+b1+b2+...+bt))+(ε01+...+εt-1t)(1-p)-εt.    By multiplying all equations with 1,p,p2,...pt .accordingly, imply a0+b00p+c0, (ε0+a1+b1)p=(ε1p+c1)p,  (ε1+a2+b2)p2=(ε2p+c2)p2, ..., (εt-1+at+bt)pt=(εtp+ct)pt.  After adding all equations together, imply a+b+(ε0p+ε1p2+...+εt-1pt)=(ε0p+ε1p2+...+εt-1pttpt+1)+(c0+c1p+c2p2+...+ct-1pt-1+ctpt). Therefore a+b=(c0+c1p+c2p2+...+ct-1pt-1+ctpttpt+1) and is equal to the expression of a+b in the base p. Similar to Sa, Sb, Sa+b=∑ t
i=0
(ci)
t. But when adding all equations only, then a0+b00+a1+b11+a2+b2+...+εt-1+at+bt0p+c01p+c1+ ε2p+c2+...+εtp+ct.  imply a0+a1+a2+...+at+b0+b1+b2+...+bt01 +...+εt-1=(ε01+ ε2+...+εt)p+c0+c1+c2+...+ct. Imply Sa+Sb+(ε01+...+εt-1)=(ε01+ ε2+...+εt)p+Sa+bt. Imply Sa+Sb-Sa+b=(ε01+ ε2+...+εt)(p-1). Since (a+b
a
)=(a+b)!/a!(a+b-a)!=(a+b)!/a!b!
, by Legendre prime power pmb=a!, m(p-1)=a-(a0+a1+a2+a3+...+ak), then (a+b)!/a!b!=(pm1c1)/((pm2c2)(pm3c3))=pmc , imply m=m1+m2+m3 , imply m(p-1)=((a+b)-Sa+b)-(a-Sa)-(b-Sb) . imply (p-1)m=(Sa+Sb-Sa+b)=(p-1)(`01+ ε2+...+εt) . Imply m=(`01+ ε2+...+εt). that is "The exact power of p dividing  (a+b
a
)
is equal to (`01+ ε2+...+εt), which is the number of 'carry-overs' when performing the addition of a, b, written in the base p. This theorem of Kummer was rediscovered by Lucas in 1878.

 IMAGE...

 


©sideway

ID: 130500001 Last Updated: 5/8/2013 Revision: 0 Ref:

close

References

  1. R. Paulo, 1996, The New Book of Prime Number Records
  2. Wolstenholme, R.J., 1862, On Certain Properties of Prime Numbers
  3. Mann, H.B., Shanks D., 1972, A Necessary and Sufficient Condition for Primality, and Its Source
  4. J.M Pollard, Kangaroos, 1975, A Monte Carlo Method for Factorization
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339

Reference 79

Computer

Hardware 249

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 429

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2024 Sideway . All rights reserved Disclaimers last modified on 06 September 2019