Number Theory
Draft for Information Only Content Relation RelationThe intuitive approach of set theory used in number theory can only help to get the idea of the properties of numbers in the set. Relation is another fundamental concept used in number theory to study the properties of number in an ordered set. Ordered SetIn general, an ordered set is a set equipped with relations among elements which are arranged in an order such that the relation between two elements can be well defined. For example, ordered set {a, b}≠ordered set {b, a} in general nTuplentuple is a list or an ordered set of n elements. Sometimes ntuple is also called ordered ntuple. For example, (a1,a2,...,an) where a1 is the first element, a2 is the second element, and an is the nth element. Therefore, two ordered ntuples are equal if and only if two corresponding elements are equal. For example, (a1,a2,...,an) and (b1,b2,...,bn) are equal if and if ai=bi for i=1, 2,...,n. Ordered PairAn ordered pair is a set of a pair of objects equipped with an order between them, for example, {a,b}. In general , an ordered pair is a 2tuple or a sequence of length 2. Cartesian ProductA Cartesian product is a mathematical operation. A Cartesian product of two sets, binary Cartesian product or Cartesian square, is the set of all ordered pairs from the corresponding elements of the two sets. For example, A⨯B={(a,b)a∈A∧b∈B}. Simiarly, the nary Cartesian product of the sets A1, A2, ..., An, is denoted by A1⨯A2⨯...⨯An. And the Cartsian product is the set of ordered ntuples (a1,a2,...,an) from the corresponding elements of the n ordered sets. For example, A1⨯A2⨯...⨯An={(a1,a2,...,an)ai∈Ai for i=1, 2, ..., n}. Some other arities are 1ary for unary, 2ary for binary, and 3ary for ternary. RelationIn general, a relation is a correspondence of an object with the others. A correspondence itself is the process of pairing objects according to some relationship such that any given objects either does or does not correspond. For example, an order pair of a relation or binary relation R between sets A and B is always an element of the Cartesian product AxB. The relation R can also be interpreted as a set of ordered pairs for which the relation is true and is therefore a subset of the Cartesian product AxB. If sets A and B are the same set C, the relation R on set C is also a subset of the Cartesian product CxC. Relation may also be of other arities. Similarly, an ntuple of an nary relation R between sets A1, A2,..., and An is an element of the nary product A1⨯A2⨯...⨯An. The relation R can also be interpreted as a set of ntuples for which the relation is true and is therefore a subset of the nary product A1⨯A2⨯...⨯An. Binary RelationFor a binary relation R, an ordered pair can be considered as a point on a plane and the set of all ordered pairs of corresponding elements can then be considered as a graph on the plane. The set of all ordered pairs {a, b} according to relation R can be written as aRb if and only if {a,b}∈R for which a has the relation R to y, or a corresponds to b under R. For example, R={(a,b):(a,b)∈R}. The set of all first elements of the ordered pairs under relation R is called the domain of R. For example, dom R={a:(∃b)(a,b)∈R} The set of all second elements of the ordered pairs under relation R is called the range of R. For example, range R={b:(∃a)(a,b)∈R}. The inverse, R1, of a relation R is the set of ordered pairs obtained by reversing tle elements of the ordered pairs under relation R. For example, R1={(a,b):(b,a)∈R}. Typical Binary RelationA relation R betwen set A and B or on C is empty if all ordered pairs under relation R do not correspond or are false. In other words, the set for an empty relation is an empty set ∅. A relation R betwen set A and B or on C is full if all ordered pairs under relation R do correspond or are true. In other words, the set for a full relation or universal relation is the set AxB or CxC. A relation R on C is an identity only if the first and second elements of all ordered pairs are identical under relation R do correspond or are true . In other words, the set for an identity relation on set C is the set {(c,c)c∈C}. Important Properties of Binary RelationSome properties of a binary relation R over a set C with x, y, and z are elements of set C
Equivalence RelationAn equivalence relation ~ on C is a binary relation which is reflexive (x ~ x for every x∈C), symmetric (x~y ⇒ y~x), and transitive (x ~ y and y ~ z ⇒ x ~ z). For example, =. The refexive, symmetric, and transitive properties of an equivalence relation can be used to partition a set C into disjoint equivalence classes. Let X be the set of elements c equivalent to x in C, X={c:c~x}. Let Y be the set of elements c equivalent to y in C, Y={c:c~y}. Let Z be the set of elements c equivalent to z in C, Z={c:c~z}. If x~y, then y~x. Since x∈X and y∈Y, therefore x∈Y and implies y∈X. If x~y and y~z, then x~z. Since z∈Z, therefore x∈Y and y∈Z and implies x∈Z. In other words, if y∈Z, then x∈Y⇒x∈Z, where x is a common element of sets Y and Z. Besides, if y∈Z, then Y⊂Z can be assumed. However by symmetry, if y∈Z, then z∈Y implies Z⊂Y can be assumed also. Thererfore if y∈Z, then Y=Z when there is a common element x in Y and Z. In other words, for any equivalence classes Y, Z, if there is a common element x, the two equivalence classes must be equal, otherwise sets Y and Z are disjoint. That is
Order RelationIn general, an order relation is a relation that ranks the order of elements against one another. Two elements x and y are incomparable under the order relation R on set C where x, y∈C if neither xRy nor yRx. That is xy or x#y. The order relation is a partial order if there is a pair of elements x,y in a set C for which neither xRy nor yRx is true. However if for every pair of element x,y in a set C for which either xRy or yRx is true, the order is a total order. In other words, there is at least two elements are incomparable for a partial order relation while there is no two element are incomparable in a total order relation. An order or partial order is a binary relation R on a set C which satisfies the reflexive, antisymmetric and transitive properties. This is a nonstrict order. However, in everyday usage, orders are usually with the irreflexive property. When an order is irreflexive and transitive, the order is also antisymetric trivally because xRy and yRx is always false. This order is call a strict order. Relation OperationA relation can also be produced by relation operation. Let R be a relation from X to Y and S be a relation from Y to Z.
Relation on RelationsLet C be a set, and relations R and S be relations on C. Since relations are sets, the relations on relations can be.
©sideway References
ID: 140600005 Last Updated: 2014/6/14 Revision: Ref: 
Home (5) Computer Hardware (149) Software Application (187) Digitization (24) Numeric (19) Programming Web (574) CSS (SC) HTML Knowledge Base Common Color (SC) Html 401 Special (SC) OS (370) MS Windows Windows10 (SC) DeskTop (6) Knowledge Mathematics Formulas (8) Number Theory (206) Algebra (20) Trigonometry (18) Geometry (18) Calculus (67) Complex Analysis (21) Engineering Tables (8) Mechanical Mechanics (1) Rigid Bodies Statics (92) Dynamics (37) Fluid (5) Fluid Kinematics (5) Control Process Control (1) Acoustics (19) FiniteElement (2) Biology (1) Geography (1) 
Latest Updated Links

Copyright © 20002019 Sideway . All rights reserved Disclaimers last modified on 10 Feb 2019