 output.to from Sideway
Complex Analysis

Draft for Information Only

# Content

`Complex Function Complex Trigonometric Function Properties of Sine and Cosine`

source/reference:
https://www.youtube.com/channel/UCaTLkDn9_1Wy5TRYfVULYUw/playlists

# Complex Function

## Complex Trigonometric Function

For the function, 𝑖𝜃=cos𝜃+𝑖sin𝜃

```Let ℯ𝑖𝜃=cos𝜃+𝑖sin𝜃 Therefore, ℯ−𝑖𝜃=cos(−𝜃)+𝑖sin(−𝜃)=cos𝜃−𝑖sin𝜃 Hence, ℯ𝑖𝜃+ℯ−𝑖𝜃=2cos𝜃 and ℯ𝑖𝜃−ℯ−𝑖𝜃=2𝑖sin𝜃 Thus cos𝜃=ℯ𝑖𝜃+ℯ−𝑖𝜃2 and sin𝜃=ℯ𝑖𝜃−ℯ−𝑖𝜃2𝑖```

By definition, The complex cosine and sine functions are defined via

`cos𝑧=ℯ𝑖𝑧+ℯ−𝑖𝑧2 and sin𝑧=ℯ𝑖𝑧−ℯ−𝑖𝑧2𝑖`

## Properties of Sine and Cosine

For the function, cos𝑧=𝑖𝑧+ℯ−𝑖𝑧2 and sin𝑧=𝑖𝑧−ℯ−𝑖𝑧2𝑖

• cos𝑧 and sin𝑧 are analytic functions (in fact, entire).
• For real-valued 𝑧, (i.e. 𝑧=𝑥+𝑖⋅0) the complex sine and cosine agree with the real-valued sine and cosine functions.
• cos(−𝑧)=−𝑖𝑧+ℯ𝑖𝑧2=cos𝑧
• sin(−𝑧)=−𝑖𝑧−ℯ𝑖𝑧2𝑖=−sin𝑧
• cos(𝑧+𝑤)=cos𝑧cos𝑤−sin𝑧sin𝑤, sin(𝑧+𝑤)=sin𝑧cos𝑤+cos𝑧sin𝑤

Proofs of the addition formulae cos(𝑧+𝑤)

``` cos𝑧cos𝑤−sin𝑧sin𝑤 =(ℯ𝑖𝑧+ℯ−𝑖𝑧2)(ℯ𝑖𝑤+ℯ−𝑖𝑤2) −(ℯ𝑖𝑧−ℯ−𝑖𝑧2𝑖)(ℯ𝑖𝑤−ℯ−𝑖𝑤2𝑖) =(ℯ𝑖𝑧+ℯ−𝑖𝑧)(ℯ𝑖𝑤+ℯ−𝑖𝑤)+(ℯ𝑖𝑧−ℯ−𝑖𝑧)(ℯ𝑖𝑤−ℯ−𝑖𝑤)4 =ℯ𝑖𝑧ℯ𝑖𝑤+ℯ𝑖𝑧ℯ−𝑖𝑤+ℯ−𝑖𝑧ℯ𝑖𝑤+ℯ−𝑖𝑧ℯ−𝑖𝑤+ℯ𝑖𝑧ℯ𝑖𝑤−ℯ𝑖𝑧ℯ−𝑖𝑤−ℯ−𝑖𝑧ℯ𝑖𝑤+ℯ−𝑖𝑧ℯ−𝑖𝑤4 =2ℯ𝑖𝑧ℯ𝑖𝑤+2ℯ−𝑖𝑧ℯ−𝑖𝑤4 =ℯ𝑖(𝑧+𝑤)+ℯ−𝑖(𝑧+𝑤)2 =cos(𝑧+𝑤)```
• cos(𝑧+2𝜋)=𝑖(𝑧+2𝜋)+ℯ−𝑖(𝑧+2𝜋)2=cos𝑧
• sin(𝑧+2𝜋)=𝑖(𝑧+2𝜋)−ℯ−𝑖(𝑧+2𝜋)2𝑖=sin𝑧
• cos2𝑧+cos2𝑧=1. Proof: Let 𝑤=−𝑧 in the addition formula for cosine.
• sin(𝑧+𝜋2)=cos𝑧

Proof:

```sin(𝑧+𝜋2)=ℯ𝑖(𝑧+𝜋2)−ℯ−𝑖(𝑧+𝜋2)2𝑖  =𝑖ℯ𝑖𝑧−(−𝑖)ℯ−𝑖𝑧2𝑖  =ℯ𝑖𝑧+ℯ−𝑖𝑧2=cos𝑧 ```
• sin𝑧=0⇔𝑧=𝑘𝜋, 𝑘∈ℤ

Proof

```sin𝑧=0⇔ℯ𝑖𝑧−ℯ−𝑖𝑧2𝑖=0  ⇔ℯ𝑖𝑧=ℯ−𝑖𝑧  ⇔𝑖𝑧−(−𝑖𝑧)=2𝑘𝜋𝑖, 𝑘∈ℤ, the periodicity of the exponential with period of 2𝑘𝜋𝑖.  ⇔2𝑖𝑧=2𝑘𝜋𝑖, 𝑘∈ℤ  ⇔𝑧=𝑘𝜋, 𝑘∈ℤ ```
• cos𝑧=0⇔𝑧=𝜋2+𝑘𝜋, 𝑘∈ℤ

Proof

```cos𝑧=0⇔ℯ𝑖𝑧+ℯ−𝑖𝑧2=0  ⇔ℯ2𝑖𝑧+12=(ℯ𝑖𝑧+𝑖)(ℯ𝑖𝑧−𝑖)2=0  ⇔ℯ2𝑖𝑧+1=0  ⇔ℯ2𝑖𝑧=−1=ℯ𝜋𝑖  ⇔2𝑖𝑧−𝜋𝑖=2𝑘𝜋𝑖, 𝑘∈ℤ, the periodicity of the exponential with period of 2𝑘𝜋𝑖  ⇔2𝑖𝑧=(2𝑘+1)𝜋𝑖, 𝑘∈ℤ  ⇔𝑧=𝜋2+𝑘𝜋, 𝑘∈ℤ ```
• Derivative of Sine: 𝑑𝑑𝑧sin𝑧=cos𝑧

Proof

```𝑑𝑑𝑧sin𝑧=𝑑𝑑𝑧ℯ𝑖𝑧−ℯ−𝑖𝑧2𝑖  =𝑖ℯ𝑖𝑧−(−𝑖)ℯ−𝑖𝑧2𝑖  =ℯ𝑖𝑧+ℯ−𝑖𝑧2=cos𝑧 ```
• Derivative of Cosine: `𝑑𝑑𝑧cos𝑧=−sin𝑧`

Proof

```𝑑𝑑𝑧cos𝑧=𝑑𝑑𝑧ℯ𝑖𝑧+ℯ−𝑖𝑧2  =𝑖ℯ𝑖𝑧+(−𝑖)ℯ−𝑖𝑧2  =𝑖(ℯ𝑖𝑧−ℯ−𝑖𝑧)2=−sin𝑧 ```
• Complex sine in terms of real functions, `sin𝑧=sin𝑥cosh𝑦+𝑖cos𝑥sinh𝑦`

Proof

```sin𝑧=sin(𝑥+𝑖𝑦)  =sin𝑥cos(𝑖𝑦)+cos𝑥sin(𝑖𝑦)  =sin𝑥ℯ𝑖(𝑖𝑦)+ℯ−𝑖(𝑖𝑦)2+cos𝑥ℯ𝑖(𝑖𝑦)−ℯ−𝑖(𝑖𝑦)2𝑖  =sin𝑥ℯ−𝑦+ℯ𝑦2+cos𝑥ℯ−𝑦−ℯ𝑦2𝑖  =sin𝑥ℯ𝑦+ℯ−𝑦2+𝑖cos𝑥ℯ𝑦−ℯ−𝑦2  =sin𝑥cosh𝑦+𝑖cos𝑥sinh𝑦 ```
• Complex cosine in terms of real functions, `cos𝑧=cos𝑥cosh𝑦+𝑖sin𝑥sinh𝑦`

Proof

```cos𝑧=cos(𝑥+𝑖𝑦)  =cos𝑥cos(𝑖𝑦)−sin𝑥sin(𝑖𝑦)  =cos𝑥ℯ𝑖(𝑖𝑦)+ℯ−𝑖(𝑖𝑦)2+sin𝑥ℯ𝑖(𝑖𝑦)−ℯ−𝑖(𝑖𝑦)2𝑖  =cos𝑥ℯ−𝑦+ℯ𝑦2+sin𝑥ℯ−𝑦−ℯ𝑦2𝑖  =cos𝑥ℯ𝑦+ℯ−𝑦2+𝑖sin𝑥ℯ𝑦−ℯ−𝑦2  =cos𝑥cosh𝑦+𝑖sin𝑥sinh𝑦 ```

©sideway

ID: 190400011 Last Updated: 2019/4/11 Revision: Home (5)

Business

Management

HBR (3)

Information

Recreation

Hobbies (7)

Culture

Chinese (1097)

English (336)

Reference (66)

Computer

Hardware (149)

Software

Application (187)

Digitization (24)

Numeric (19)

Programming

Web (644) CSS (SC)

ASP.NET (SC)

HTML

Knowledge Base

Common Color (SC)

Html 401 Special (SC)

OS (389) MS Windows

Windows10 (SC)

.NET Framework (SC)

DeskTop (7)

Knowledge

Mathematics

Formulas (8)

Number Theory (206)

Algebra (20)

Trigonometry (18)

Geometry (18)

Calculus (67)

Complex Analysis (21)

Engineering

Tables (8)

Mechanical

Mechanics (1)

Rigid Bodies

Statics (92)

Dynamics (37)

Fluid (5)

Control

Acoustics (19)

Biology (1)

Geography (1)

Latest Updated Links

Copyright © 2000-2019 Sideway . All rights reserved Disclaimers last modified on 10 Feb 2019