Sideway
output.to from Sideway
Draft for Information Only

Content

Python Data Functions
 Conversion Functions
    ascii(object)
    bin(x)
    chr(i)
    enumerate(iterable, start=0)
    filter(function, iterable)
    format(value[, format_spec])
    hex(x)
    iter(object[, sentinel])
    len(s)
    map(function, iterable, ...)
    max(iterable, *[, key, default]), max(arg1, arg2, *args[, key])
    min(iterable, *[, key, default]),min(arg1, arg2, *args[, key])
    next(iterator[, default])
    oct(x)
    ord(c)
    reversed(seq)
    sorted(iterable, *, key=None, reverse=False)
    zip(*iterables)
 Mathematical Functions
    abs(x)
    all(iterable)
    any(iterable)
    callable(object)
    divmod(a, b)
    isinstance(object, classinfo)
    issubclass(class, classinfo)
    pow(base, exp[, mod])
    round(number[, ndigits])
    sum(iterable, /, start=0)
 Source and Reference

Python Data Functions

The Python interpreter has a number of functions and types built into it that are always available.

Conversion Functions

ascii(object)
As repr(), return a string containing a printable representation of an object, but escape the non-ASCII characters in the string returned by repr() using \x, \u or \U escapes. This generates a string similar to that returned by repr() in Python 2.
bin(x)
Convert an integer number to a binary string prefixed with “0b”. The result is a valid Python expression. If x is not a Python int object, it has to define an __index__() method that returns an integer. Some examples: >>> >>> bin(3) '0b11' >>> bin(-10) '-0b1010' If prefix “0b” is desired or not, you can use either of the following ways. >>> >>> format(14, '#b'), format(14, 'b') ('0b1110', '1110') >>> f'{14:#b}', f'{14:b}' ('0b1110', '1110')
chr(i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr(97) returns the string 'a', while chr(8364) returns the string '€'. This is the inverse of ord(). The valid range for the argument is from 0 through 1,114,111 (0x10FFFF in base 16). ValueError will be raised if i is outside that range.
enumerate(iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports iteration. The __next__() method of the iterator returned by enumerate() returns a tuple containing a count (from start which defaults to 0) and the values obtained from iterating over iterable. >>> >>> seasons = ['Spring', 'Summer', 'Fall', 'Winter'] >>> list(enumerate(seasons)) [(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')] >>> list(enumerate(seasons, start=1)) [(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')] Equivalent to: def enumerate(sequence, start=0): n = start for elem in sequence: yield n, elem n += 1
filter(function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is assumed, that is, all elements of iterable that are false are removed. Note that filter(function, iterable) is equivalent to the generator expression (item for item in iterable if function(item)) if function is not None and (item for item in iterable if item) if function is None. See itertools.filterfalse() for the complementary function that returns elements of iterable for which function returns false.
format(value[, format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec will depend on the type of the value argument, however there is a standard formatting syntax that is used by most built-in types: Format Specification Mini-Language. The default format_spec is an empty string which usually gives the same effect as calling str(value). A call to format(value, format_spec) is translated to type(value).__format__(value, format_spec) which bypasses the instance dictionary when searching for the value’s __format__() method. A TypeError exception is raised if the method search reaches object and the format_spec is non-empty, or if either the format_spec or the return value are not strings.
hex(x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python int object, it has to define an __index__() method that returns an integer. Some examples: >>> >>> hex(255) '0xff' >>> hex(-42) '-0x2a' If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you can use either of the following ways: >>> >>> '%#x' % 255, '%x' % 255, '%X' % 255 ('0xff', 'ff', 'FF') >>> format(255, '#x'), format(255, 'x'), format(255, 'X') ('0xff', 'ff', 'FF') >>> f'{255:#x}', f'{255:x}', f'{255:X}' ('0xff', 'ff', 'FF') Note To obtain a hexadecimal string representation for a float, use the float.hex() method.
iter(object[, sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the second argument. Without a second argument, object must be a collection object which supports the iteration protocol (the __iter__() method), or it must support the sequence protocol (the __getitem__() method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in this case will call object with no arguments for each call to its __next__() method; if the value returned is equal to sentinel, StopIteration will be raised, otherwise the value will be returned. See also Iterator Types. One useful application of the second form of iter() is to build a block-reader. For example, reading fixed-width blocks from a binary database file until the end of file is reached: from functools import partial with open('mydata.db', 'rb') as f: for block in iter(partial(f.read, 64), b''): process_block(block)
len(s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set). CPython implementation detail: len raises OverflowError on lengths larger than sys.maxsize, such as range(2 ** 100).
map(function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable arguments are passed, function must take that many arguments and is applied to the items from all iterables in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the function inputs are already arranged into argument tuples, see itertools.starmap().
max(iterable, *[, key, default]), max(arg1, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments. If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If two or more positional arguments are provided, the largest of the positional arguments is returned. There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like that used for list.sort(). The default argument specifies an object to return if the provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised. If multiple items are maximal, the function returns the first one encountered. This is consistent with other sort-stability preserving tools such as sorted(iterable, key=keyfunc, reverse=True)[0] and heapq.nlargest(1, iterable, key=keyfunc).
min(iterable, *[, key, default]),min(arg1, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments. If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If two or more positional arguments are provided, the smallest of the positional arguments is returned. There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function like that used for list.sort(). The default argument specifies an object to return if the provided iterable is empty. If the iterable is empty and default is not provided, a ValueError is raised. If multiple items are minimal, the function returns the first one encountered. This is consistent with other sort-stability preserving tools such as sorted(iterable, key=keyfunc)[0] and heapq.nsmallest(1, iterable, key=keyfunc).
next(iterator[, default])
Retrieve the next item from the iterator by calling its __next__() method. If default is given, it is returned if the iterator is exhausted, otherwise StopIteration is raised.
oct(x)
Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x is not a Python int object, it has to define an __index__() method that returns an integer. For example: >>> >>> oct(8) '0o10' >>> oct(-56) '-0o70' If you want to convert an integer number to octal string either with prefix “0o” or not, you can use either of the following ways. >>> >>> '%#o' % 10, '%o' % 10 ('0o12', '12') >>> format(10, '#o'), format(10, 'o') ('0o12', '12') >>> f'{10:#o}', f'{10:o}' ('0o12', '12')
ord(c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of that character. For example, ord('a') returns the integer 97 and ord('€') (Euro sign) returns 8364. This is the inverse of chr().
reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports the sequence protocol (the __len__() method and the __getitem__() method with integer arguments starting at 0).
sorted(iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable. Has two optional arguments which must be specified as keyword arguments. key specifies a function of one argument that is used to extract a comparison key from each element in iterable (for example, key=str.lower). The default value is None (compare the elements directly). reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed. Use functools.cmp_to_key() to convert an old-style cmp function to a key function. The built-in sorted() function is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department, then by salary grade).
zip(*iterables)
Make an iterator that aggregates elements from each of the iterables. Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument, it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to: def zip(*iterables): # zip('ABCD', 'xy') --> Ax By sentinel = object() iterators = [iter(it) for it in iterables] while iterators: result = [] for it in iterators: elem = next(it, sentinel) if elem is sentinel: return result.append(elem) yield tuple(result) The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a data series into n-length groups using zip(*[iter(s)]*n). This repeats the same iterator n times so that each output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length chunks. zip() should only be used with unequal length inputs when you don’t care about trailing, unmatched values from the longer iterables. If those values are important, use itertools.zip_longest() instead. zip() in conjunction with the * operator can be used to unzip a list: >>> >>> x = [1, 2, 3] >>> y = [4, 5, 6] >>> zipped = zip(x, y) >>> list(zipped) [(1, 4), (2, 5), (3, 6)] >>> x2, y2 = zip(*zip(x, y)) >>> x == list(x2) and y == list(y2) True

Mathematical Functions

abs(x)
Return the absolute value of a number. The argument may be an integer, a floating point number, or an object implementing __abs__(). If the argument is a complex number, its magnitude is returned.
all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to: def all(iterable): for element in iterable: if not element: return False return True
any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to: def any(iterable): for element in iterable: if element: return True return False
callable(object)
Return True if the object argument appears callable, False if not. If this returns True, it is still possible that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a class returns a new instance); instances are callable if their class has a __call__() method.
divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b) < abs(b).
isinstance(object, classinfo)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virtual) subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a tuple of type objects (or recursively, other such tuples), return True if object is an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.
issubclass(class, classinfo)
Return True if class is a subclass (direct, indirect or virtual) of classinfo. A class is considered a subclass of itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other case, a TypeError exception is raised.
pow(base, exp[, mod])
Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more efficiently than pow(base, exp) % mod). The two-argument form pow(base, exp) is equivalent to using the power operator: base**exp. The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic operators apply. For int operands, the result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero. If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow(inv_base, -exp, mod) is returned, where inv_base is an inverse to base modulo mod. Here’s an example of computing an inverse for 38 modulo 97: >>> >>> pow(38, -1, mod=97) 23 >>> 23 * 38 % 97 == 1 True
round(number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns the nearest integer to its input. For the built-in types supporting round(), values are rounded to the closest multiple of 10 to the power minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example, both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer value is valid for ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the return value has the same type as number. For a general Python object number, round delegates to number.__round__. Note The behavior of round() for floats can be surprising: for example, round(2.675, 2) gives 2.67 instead of the expected 2.68. This is not a bug: it’s a result of the fact that most decimal fractions can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and Limitations for more information.
sum(iterable, /, start=0)
Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are normally numbers, and the start value is not allowed to be a string. For some use cases, there are good alternatives to sum(). The preferred, fast way to concatenate a sequence of strings is by calling ''.join(sequence). To add floating point values with extended precision, see math.fsum(). To concatenate a series of iterables, consider using itertools.chain().

Source and Reference


©sideway

ID: 210500004 Last Updated: 5/4/2021 Revision: 0


Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339

Reference 79

Computer

Hardware 249

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 429

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2024 Sideway . All rights reserved Disclaimers last modified on 06 September 2019