Sideway
output.to from Sideway
Draft for Information Only

Content

Complex Analysis
  Complex Number
 Function and Complex Number
  Complex Function
  Topics
   The Fundamental Theorem of Algebra

source/reference:
https://www.youtube.com/channel/UCaTLkDn9_1Wy5TRYfVULYUw/playlists

Complex Analysis

In general, complex analysis is the study of complex numbers.

Complex Number

Complex numbers are numbers of the form a+b𝑖, where a and b are real numbers and 𝑖 is the imaginary unit that is equal to the square root of -1. Algebraically, a complex number can be considered as the algebraic extension of an ordinary real part of a number by an imaginary part 𝑖. Geometrically, complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane with the horizontal real axis and the vertical imaginary axis.

Function and Complex Number

Consider a quadratic equation, x²=mx+b that representing the intersection of graphs y=x² and y=mx+b. The solutions are eqaul to x=m/2±√(m²/4+b). However, when m²/4+b<0, there is no real solutions since the graphs y=x² and y=mx+b do not inersect in this case. Sometime, it is the simplest case used to argue that the concept of complex number with 𝑖= √-1 is introduced to solve the no real solution problems.

Consider a cubic equation, x³=px+q that representing the intersection of graphs y=x³ and y=px+q. Unlike quadratic equations, there must always be a solution for the cubic equation. Del Ferro (1465-1526) and Tartaglia (1499-1577), followed by Cardano (1501-1576), showed that x³=px+q has a solution given by x=∛(√(q²/4-p³/27)+q/2)-∛(√(q²/4-p³/27)-q/2). e.g x³=-6x+20⇒x=2.

However, about 30 years after the discovery of the solution formula, Bombelli (1526-1572) considered another equation, x³=15x+4 and the solution is x=∛(√(4²/4-15³/27)+4/2)-∛(√(4²/4-15³/27)-4/2)=∛(2+√-121)+∛(2-√-121). Bombelli further discovered that ∛(2+√-121)=2+√-1 and ∛(2-√-121)=2-√-1 since (2+√-1)³=2+√-121 and (2-√-1)³=2-√-121. And therefore x=4. Bombelli's discovery demonstrated that perfectly real problems also require complex arithmetic for formulate the solution.

Complex Function

A function whose range is in the complex number set is said to be a complex function, or a complex-valued function. Unlike ordinary real function, the domain and range of a complex function are usually represented by two individual complex planes.

 

Topics

Rieman, Weuerstrass, Cauchy, 𝑖, lim, e open set

compex dynamics: Mandelbrot set, Julia setss

complex function, continuity, complex differentiation

conformal mappings, Mobius transformations, Riemann mapping theorem

complex integration, Cauchy theory and consequences.

power series representation of analytic functions, Riemann hypothesis

The Fundamental Theorem of Algebra

If a₀, a₁, ⋯, aₙ are complex numbers with aₙ≠0, then the polynomial

p(z)=aₙzⁿ+aₙ₋₁zⁿ⁻¹+⋯+a₂z²+a₁z+a₀

has n roots z₀, z₁, ⋯, zₙ in ℂ and can be factored as

p(z)=aₙ(z-z₀)(z-z₁)⋯(z-zₙ)

 

 

 


©sideway

ID: 190300013 Last Updated: 13/3/2019 Revision: 0

IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 7

Culture

Chinese 1097

English 337

Reference 67

Computer

Hardware 149

Software

Application 187

Digitization 24

Numeric 19

Programming

Web 740

CSS 1

ASP.NET 1

Regular Expression 1

HTML

Knowledge Base

Common Color 1

Html Entity (Unicode) 1

Html 401 Special 1

OS 389

MS Windows

Windows10 1

.NET Framework 1

DeskTop 7

Knowledge

Mathematics

Formulas 8

Algebra 20

Number Theory 206

Trigonometry 18

Geometry 18

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Physics

Electric 5

Biology 1

Geography 1


Copyright © 2000-2019 Sideway . All rights reserved Disclaimers last modified on 06 September 2019