Sideway from Sideway
Complex Analysis

Draft for Information Only


The Cauchy-Riemann equations
 Complex Function
 Cauchy-Riemann equations


The Cauchy-Riemann equations

Complex Function

A complex function 𝑓 can be written as 𝑓(𝑧)=𝑒(π‘₯,𝑦)+𝑖𝑣(π‘₯,𝑦) where 𝑧=π‘₯+𝑖𝑦 and 𝑒, 𝑣 are real-valued functions that depend on the two real variables π‘₯ and 𝑦.


𝑓(𝑧)=𝑧2=(π‘₯+𝑖𝑦)2=π‘₯2-𝑦2 𝑒(π‘₯,𝑦) +𝑖⋅2π‘₯𝑦 𝑣(π‘₯,𝑦)

Thus 𝑒(π‘₯,𝑦)=π‘₯2-𝑦2 and 𝑣(π‘₯,𝑦)=2π‘₯𝑦.

For example, if 𝑧=2+𝑖, then clearly 𝑓(𝑧)=(2+𝑖)2=4+4𝑖+𝑖2=3+4𝑖.

Alternatively, since 𝑧=π‘₯+𝑖𝑦, then π‘₯=2 and 𝑦=1, thus

𝑒(π‘₯,𝑦)=𝑒(2,1)=22-12=3 and 𝑣(π‘₯,𝑦)=𝑣(2,1)=2β‹…2β‹…1=4



Another example

𝑓(𝑧)=𝑧2=𝑒(π‘₯,𝑦)+𝑖=2𝑣(π‘₯,𝑦), 𝑒(π‘₯,𝑦)=π‘₯2-𝑦2, 𝑣(π‘₯,𝑦)=2π‘₯𝑦


  • 𝑓 is differentiable everywhere in β„‚
  • 𝑓′(𝑧)=2𝑧 for all π‘§βˆˆβ„‚

For the function 𝑒(π‘₯,𝑦)

  • If fix the variable 𝑦 at a certain value, then 𝑒 only depends on π‘₯. For example, if only consider 𝑦=3, then 𝑒(π‘₯,𝑦)=𝑒(π‘₯,3)=π‘₯2-9
  • This function can now differentiate with respect to π‘₯ according to the rules of calculus and find that the derivative is 2π‘₯
  • That is βˆ‚οΏ½οΏ½οΏ½βˆ‚π‘₯(π‘₯,3)=𝑢π‘₯(π‘₯,3)=2π‘₯, and, more generally, for arbitrary (fixed) 𝑦, βˆ‚π‘’βˆ‚π‘₯(π‘₯,𝑦)=𝑒π‘₯(π‘₯,𝑦)=2π‘₯
  • This is called the partial derivative of 𝑒 with respect to π‘₯

Similarly, for the function 𝑣(π‘₯,𝑦)

  • For example, 𝑣(π‘₯,3)=2β‹…π‘₯β‹…3=6π‘₯, and the derivative of this function with respect to π‘₯ is 6.
  • Thus βˆ‚π‘£βˆ‚π‘₯(π‘₯,3)=𝑣π‘₯(π‘₯,3)=6
  • More generally, for arbitrary (fixed) 𝑦, βˆ‚π‘£βˆ‚π‘₯(π‘₯,𝑦)=𝑣π‘₯(π‘₯,𝑦)=2𝑦
  • This is called the partial derivative of 𝑣 with respect to π‘₯.

Obviously, the same thing can be done by fixing π‘₯ and differentiating with respect to 𝑦.

  • Example: Let π‘₯ =2. Then 𝑒(π‘₯,𝑦)=𝑒(2,𝑦)=4βˆ’π‘¦2 and βˆ‚π‘’βˆ‚π‘¦(π‘₯,𝑦)=𝑒𝑦(2,𝑦)=-2𝑦
  • More generally, βˆ‚π‘’βˆ‚π‘¦(π‘₯,𝑦)=𝑒𝑦(π‘₯,𝑦)=-2𝑦
  • This is called the partial derivative of 𝑒 with respect to 𝑦.
  • Similarly, 𝑣(2,𝑦)=4𝑦, and βˆ‚π‘£βˆ‚π‘¦(2,𝑦)=𝑣𝑦(2,𝑦)=4. More generally, βˆ‚π‘£βˆ‚π‘¦(π‘₯,𝑦)=𝑣𝑦(π‘₯,𝑦)=2π‘₯
  • This is called the partial derivative of 𝑣 with respect to 𝑦.

And the result are

𝑓(𝑧)=𝑧2=𝑒(π‘₯,𝑦)+𝑖=2𝑣(π‘₯,𝑦), 𝑒(π‘₯,𝑦)=π‘₯2-𝑦2, 𝑣(π‘₯,οΏ½οΏ½οΏ½)=2π‘₯𝑦

The derivatives:

𝑓′(𝑧)=2𝑧, 𝑒π‘₯(π‘₯,𝑦)=2π‘₯, 𝑒𝑦(π‘₯,𝑦)=-2𝑦, 𝑣π‘₯(π‘₯,𝑦)=2𝑦, 𝑣𝑦(π‘₯,𝑦)=2x


  • 𝑒π‘₯=𝑣𝑦
  • 𝑒𝑦=-𝑣π‘₯
  • 𝑓′=𝑒π‘₯+𝑖𝑣π‘₯ =𝑓π‘₯ =-𝑖(𝑒𝑦+𝑖𝑣𝑦) =-𝑖𝑓𝑦

Another Example

𝑓(𝑧)=2𝑧3-4𝑧+1, where 𝑧=π‘₯+𝑖𝑦  =2(π‘₯+𝑖𝑦)3-4(π‘₯+𝑖𝑦)+1  =2(π‘₯3+3π‘₯2𝑖𝑦+3π‘₯𝑖2𝑦2+𝑖3𝑦3)-4π‘₯-4𝑖𝑦+1  =(2π‘₯3-6π‘₯𝑦2-4π‘₯+1) 𝑒(π‘₯,𝑦) +𝑖(6π‘₯2𝑦-2𝑦3-4𝑦) 𝑣(π‘₯,𝑦)


𝑒π‘₯(π‘₯,𝑦)=6π‘₯2-6𝑦2-4𝑣π‘₯(π‘₯,𝑦)=12π‘₯𝑦 𝑒𝑦(π‘₯,𝑦)=-12π‘₯𝑦𝑣𝑦(π‘₯,𝑦)=6π‘₯2-6𝑦2-4

Thus, 𝑒π‘₯=𝑣𝑦 and 𝑒𝑦=-𝑣π‘₯

The derivatives:

𝑓′(𝑧)=6𝑧2-4, where 𝑧=π‘₯+𝑖𝑦 =6(π‘₯+𝑖𝑦)2-4  =(6π‘₯2-6𝑦2-4)+12𝑖π‘₯𝑦  =𝑒π‘₯(π‘₯,𝑦)+𝑖𝑣π‘₯(π‘₯,𝑦)=-𝑖(𝑒𝑦(π‘₯,𝑦)+𝑖𝑣𝑦(π‘₯,𝑦))=𝑓π‘₯(𝑧)=-𝑖𝑓𝑦(𝑧)

Cauchy-Riemann equations

By Theorem. Suppose that 𝑓(𝑧)=𝑒(π‘₯,𝑦)+𝑖𝑣(π‘₯,𝑦) is differentiable at a point 𝑧0. Then the partial derivatives 𝑒π‘₯, 𝑒𝑦, 𝑣π‘₯, 𝑣𝑦 exist at 𝑧0, and satisfy there:

𝑒π‘₯=𝑣𝑦 and 𝑒𝑦=-𝑣π‘₯

These are called the Cauchy-Riemann Equations. Also,

𝑓′(𝑧0)=𝑒π‘₯(π‘₯0,𝑦0)+𝑖𝑣π‘₯(π‘₯0,𝑦0)=𝑓π‘₯(𝑧0)  =-𝑖(𝑒𝑦(π‘₯0,𝑦0)+𝑖𝑣𝑦(π‘₯0,𝑦0))=-𝑖𝑓𝑦(𝑧0)

Method of Proof

For the difference quotient,


whose limit as β„Žβ†’0 must exist if 𝑓 is differentiable at 𝑧0

  • Let β„Ž approach 0 along the real axis only first, and then along the imaginary axis only next. Both times the limit must exist and both limits must be the same.
  • Equating these two limits with each other and recognizing the partial derivatives in the expressions yields the Cauchy-Riemann equations.

Another example

Let 𝑓(𝑧)=𝑧=π‘₯-𝑖𝑦, then 𝑒(π‘₯,𝑦)=π‘₯ and 𝑣(π‘₯,𝑦)=-𝑦, so

𝑒π‘₯(π‘₯,𝑦)=1𝑣π‘₯(π‘₯,𝑦)=0 𝑒𝑦(π‘₯,𝑦)=0𝑣𝑦(π‘₯,𝑦)=-1

Since 𝑒π‘₯(π‘₯,𝑦)≠𝑣𝑦(π‘₯,𝑦) (while 𝑒𝑦(π‘₯,𝑦)=-𝑣π‘₯(π‘₯,𝑦) for all 𝑧, the function 𝑓 is not differentiable anywhere.

Recall: If 𝑓 is differentiable at 𝑧0 then the Cauchy-Riemann equations hold at 𝑧0. However, if 𝑓 satisfies the Cauchy-Riemann equations at a point 𝑧0 then does this imply that 𝑓 is differentiable at 𝑧0? And what is the sufficient conditions for differentiability.

By theorem. Let 𝑓=𝑒+𝑖𝑣 be defined on a domain π·βŠ‚β„‚. Then 𝑓 is analytic in >𝐷 if and only if 𝑒(π‘₯,𝑦) and 𝑣(π‘₯,𝑦) have continuous first partial derivatives on >𝐷 that satisfy the Cauchy-Riemann equations.

Example: 𝑓(𝑧)=𝑒π‘₯cos𝑦+𝑖𝑒π‘₯sin𝑦. The

𝑒π‘₯(π‘₯,𝑦)=𝑒π‘₯cos𝑦𝑣π‘₯(π‘₯,𝑦)=𝑒π‘₯sin𝑦 𝑒𝑦(π‘₯,𝑦)=βˆ’π‘’π‘₯sin𝑦𝑣𝑦(π‘₯,𝑦)=𝑒π‘₯cos𝑦

Thus the Cauchy-Riemann equations are satisfied, and in addition, the functions 𝑒π‘₯, 𝑒𝑦, 𝑣π‘₯, 𝑣𝑦 are continuous in β„‚. Therefore, the function 𝑓 is analytic in β„‚, thus entire.


ID: 190300030 Last Updated: 2019/3/30 Revision:


Home (5)



HBR (3)



Hobbies (7)


Chinese (1097)

English (336)

Reference (66)


Hardware (149)


Application (187)

Digitization (24)

Numeric (19)


Web (648)new



Regular Expression (SC)


Knowledge Base

Common Color (SC)

Html Entity (Unicode) (SC)

Html 401 Special (SC)

OS (389)

MS Windows

Windows10 (SC)

.NET Framework (SC)

DeskTop (7)



Formulas (8)

Number Theory (206)

Algebra (20)

Trigonometry (18)

Geometry (18)

Calculus (67)

Complex Analysis (21)


Tables (8)


Mechanics (1)

Rigid Bodies

Statics (92)

Dynamics (37)

Fluid (5)

Fluid Kinematics (5)


Process Control (1)

Acoustics (19)

FiniteElement (2)

Biology (1)

Geography (1)

Copyright © 2000-2019 Sideway . All rights reserved Disclaimers last modified on 10 Feb 2019