Sideway from Sideway
Complex Analysis

Draft for Information Only


Laurent Series
 Review of Taylor Series
 Laurent Series Expansion
 The Coefficients π‘Žπ‘˜
  Another Example
 The Coefficients π‘Žπ‘˜ Continued
 Isolated singularities
 Laurent Series
 Three Types of Isolated Singularities
 Classification of Isolated Singularities
 Types of Singularities
 Removable Singularities
 Essential Singularities
 Picard's Theorem


Laurent Series

Review of Taylor Series

Recall: If 𝑓:π‘ˆβ†’β„‚ is analytic and {|π‘§βˆ’π‘§0|<𝑅}βŠ‚π‘ˆ then 𝑓 has representation 𝑓(𝑧)=βˆžβˆ‘π‘˜=0π‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜, where π‘Žπ‘˜=𝑓(π‘˜)(𝑧0)π‘˜!, π‘˜β‰₯0.

  • What if 𝑓 is not differentiable at some point?
  • Example: 𝑓(𝑧)=𝑧𝑧2+4 is not differentiable at 𝑧=Β±2𝑖 (undefined there).
  • 𝑓(𝑧)=Log 𝑧 not continuous on (βˆ’βˆž,0], so not differentiable there.

Laurent Series Expansion

Theorem (Laurent Series Expansion)If 𝑓:π‘ˆβ†’β„‚ is analytic and {π‘Ÿ<|π‘§βˆ’π‘§0|<𝑅}βŠ‚π‘ˆ then 𝑓 has a Laurent series expansion 𝑓(𝑧)=βˆžβˆ‘π‘˜=βˆ’βˆžπ‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜ =β‹―+π‘Žβˆ’2(π‘§βˆ’π‘§0)2+π‘Žβˆ’1(π‘§βˆ’π‘§0)2+π‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹―, that converges at each point of the annulus and converges absolutely and uniformly in each sub annulus {𝑠≀|π‘§βˆ’π‘§0|≀𝑑}, where π‘Ÿ<𝑠<𝑑<𝑅.

The Coefficients π‘Žπ‘˜

Note: The coefficients π‘Žπ‘˜ are uniquely determined by 𝑓. How do we find them?


𝑓(𝑧)=1(π‘§βˆ’1)(π‘§βˆ’2) is analytic in β„‚\{1,2}.

Let's find the Laurent series in the annulus {1<|𝑧|<2}. Trick: 1(π‘§βˆ’1)(π‘§βˆ’2)=(π‘§βˆ’1)βˆ’(π‘§βˆ’2)(π‘§βˆ’1)(π‘§βˆ’2)=1(π‘§βˆ’2)βˆ’1(π‘§βˆ’1)  =βˆ’12
 =βˆ’12βˆžβˆ‘π‘˜=0𝑧2π‘˜βˆ’1π‘§βˆžβˆ‘π‘˜=01π‘§π‘˜  =βˆžβˆ‘π‘˜=0βˆ’12π‘˜+1π‘§π‘˜+βˆžβˆ‘π‘˜=1βˆ’1π‘§π‘˜  =βˆžβˆ‘π‘˜=0βˆ’12π‘˜+1π‘§π‘˜+βˆ’1βˆ‘π‘˜=βˆ’βˆž(βˆ’1)π‘§π‘˜.
Therefore 1(π‘§βˆ’1)(π‘§βˆ’2)=βˆžβˆ‘π‘˜=0βˆ’12π‘˜+1π‘§π‘˜+βˆ’1βˆ‘π‘˜=βˆ’βˆž(βˆ’1)π‘§π‘˜ in {1<|𝑧|<2}

What if choosing a different annulus? 𝑓 is also analytic in {2<|𝑧|<∞}. 1(π‘§βˆ’1)(π‘§βˆ’2)=(π‘§βˆ’1)βˆ’(π‘§βˆ’2)(π‘§βˆ’1)(π‘§βˆ’2)=1(π‘§βˆ’2)βˆ’1(π‘§βˆ’1)  =
 =1π‘§βˆžβˆ‘π‘˜=02π‘§π‘˜βˆ’1π‘§βˆžβˆ‘π‘˜=01π‘§π‘˜  =βˆžβˆ‘π‘˜=12π‘˜βˆ’1π‘§π‘˜βˆ’βˆžβˆ‘π‘˜=11π‘§π‘˜  =βˆ’1βˆ‘π‘˜=βˆ’βˆž(2βˆ’π‘˜βˆ’1βˆ’1)π‘§π‘˜.
Therefore 1(π‘§βˆ’1)(π‘§βˆ’2)=βˆžβˆ‘π‘˜=12π‘˜βˆ’1π‘§π‘˜βˆ’βˆžβˆ‘π‘˜=11π‘§π‘˜=βˆ’1βˆ‘π‘˜=βˆ’βˆž(2βˆ’π‘˜βˆ’1βˆ’1)π‘§π‘˜ in {2<|𝑧|<∞}

What if choosing yet another annulus? 𝑓 is also analytic in {0<|π‘§βˆ’1|<1}.

Since 1(π‘§βˆ’2)=1(π‘§βˆ’1)βˆ’1=βˆ’11βˆ’(π‘§βˆ’1)=βˆ’βˆžβˆ‘π‘˜=0(π‘§βˆ’1)π‘˜ in {0<|π‘§βˆ’1|<1} So 1(π‘§βˆ’1)(π‘§βˆ’2)=(π‘§βˆ’1)βˆ’(π‘§βˆ’2)(π‘§βˆ’1)(π‘§βˆ’2)=1(π‘§βˆ’2)βˆ’1(π‘§βˆ’1)  =βˆ’βˆžβˆ‘π‘˜=0(π‘§βˆ’1)π‘˜βˆ’1(π‘§βˆ’1)  =βˆžβˆ‘π‘˜=βˆ’1(βˆ’1)(π‘§βˆ’1)π‘˜. Therefore 1(π‘§βˆ’1)(π‘§βˆ’2)=βˆžβˆ‘π‘˜=βˆ’1(βˆ’1)(π‘§βˆ’1)π‘˜ in {0<|π‘§βˆ’1|<1}

Another Example

sin 𝑧𝑧4 is analytic in β„‚\{0}. What is its Laurent series, centered at 0?

Recall: sin 𝑧=βˆžβˆ‘π‘˜=0(βˆ’1)π‘˜(2π‘˜+1)!𝑧2π‘˜+1=π‘§βˆ’π‘§33!+𝑧55!βˆ’π‘§77!+βˆ’β‹― so sin 𝑧𝑧4=1𝑧3βˆ’13!1𝑧+15!π‘§βˆ’17!𝑧3+βˆ’β‹― Thus π‘Žβˆ’3=1, π‘Žβˆ’2=0, π‘Žβˆ’1=βˆ’13!, π‘Ž0=0, π‘Ž1=15!, π‘Ž2=0, π‘Ž3=βˆ’17!, β‹―

The Coefficients π‘Žπ‘˜ Continued

Recall: For a Taylor series, 𝑓(𝑧)=βˆžβˆ‘π‘˜=0π‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜, |π‘§βˆ’π‘§0|<𝑅, the π‘Žπ‘˜ can be calculated via π‘Žπ‘˜=𝑓(π‘˜)(𝑧0)π‘˜!. How about for a Laurent series 𝑓(𝑧)=βˆžβˆ‘π‘˜=βˆ’βˆžπ‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜, π‘Ÿ<|π‘§βˆ’π‘§0|<𝑅? 𝑓 may not be defined at 𝑧0, so needed a new approach! Back to Taylor series: π‘Žπ‘˜=𝑓(π‘˜)(𝑧0)π‘˜!Cauchy=12πœ‹π‘– βˆ«|π‘§βˆ’π‘§0|=𝑠𝑓(𝑧)(π‘§βˆ’π‘§0)π‘˜+1𝑑𝑧 for any 𝑠 between 0 and 𝑅.

One can show a similar fact for Laurent series: TheoremIf 𝑓 is analytic in {π‘Ÿ<|π‘§βˆ’π‘§0|<𝑅}, then 𝑓(𝑧)=βˆžβˆ‘π‘˜=βˆ’βˆžπ‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜, where π‘Žπ‘˜=12πœ‹π‘– βˆ«|π‘§βˆ’π‘§0|=𝑠𝑓(𝑧)(π‘§βˆ’π‘§0)π‘˜+1𝑑𝑧 for any 𝑠 between π‘Ÿ and 𝑅, and all π‘˜βˆˆβ„€.

Note: This does not seem all that useful for finding actual values of π‘Žπ‘˜, but it is useful to estimate π‘Žπ‘˜. Will using this when calculating integrals later

Isolated singularities

DefinitionA point 𝑧0 is an isolated singularity of 𝑓 if 𝑓 is analytic in a punctured disk {0<|π‘§βˆ’π‘§0|<π‘Ÿ} centered at 𝑧0
  • 𝑓(𝑧)=1𝑧 has an isolated singularity at 𝑧0=0.
  • 𝑓(𝑧)=1sin 𝑧 has isolated singularities at 𝑧0=0, Β±πœ‹, Β±2πœ‹, β‹―.
  • 𝑓(𝑧)=𝑧 and 𝑓(𝑧)=Log 𝑧 do not have isolatd singularities at 𝑧0=0 since these functions cannot be defined to be analytic in any punctured disk around 0.
  • 𝑓(𝑧)=1π‘§βˆ’2 has an isolated singularity at 𝑧0=2.

Laurent Series

By Laurent's Theorem, if 𝑓 has an isolated singularity at 𝑧0 (so 𝑓 is analytic in the annulus {0<|π‘§βˆ’π‘§0|<π‘Ÿ} for some π‘Ÿ>0) then 𝑓 has a laurent series expansion there: 𝑓(𝑧)=βˆžβˆ‘π‘˜=βˆ’βˆžπ‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜  =β‹―+π‘Žβˆ’2(π‘§βˆ’π‘§0)2+π‘Žβˆ’1(π‘§βˆ’π‘§0)2 principal part +π‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹― analytic Three fundamentally different things can happen that influence how 𝑓 behaves near 𝑧0.

Three Types of Isolated Singularities

𝑓(𝑧)=β‹―+π‘Žβˆ’2(π‘§βˆ’π‘§0)2+π‘Žβˆ’1(π‘§βˆ’π‘§0)2+π‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹―, 0<|π‘§βˆ’π‘§0|<π‘Ÿ


  • 𝑓(𝑧)=cos π‘§βˆ’1𝑧2=1𝑧2βˆ’π‘§22!+𝑧44!βˆ’+β‹―=βˆ’12!+𝑧24!βˆ’+β‹― No negative powers of 𝑧!
  • 𝑓(𝑧)=cos 𝑧𝑧4=1𝑧41βˆ’π‘§22!+𝑧44!βˆ’+β‹―=1𝑧4βˆ’12!1𝑧2+14!βˆ’π‘§26!+βˆ’β‹― Finitely many negative powers of 𝑧!
  • 𝑓(𝑧)=cos1𝑧=1βˆ’12!1𝑧2+14!1𝑧4βˆ’16!1𝑧6+βˆ’β‹― Infinitely many negative powers of 𝑧!

Classification of Isolated Singularities

We classify singularities based upon these differences: DefinitionSuppose 𝑧0 is an isolated singularity of an analytic function 𝑓 with Laurent series βˆžβˆ‘π‘˜=βˆ’βˆžπ‘Žπ‘˜(π‘§βˆ’π‘§0)π‘˜, 0<|π‘§βˆ’π‘§0|<π‘Ÿ. Then the singularity 𝑧0 is removable if π‘Žπ‘˜=0 for all π‘˜<0. a pole if there exist 𝑁>0 so that π‘Žβˆ’π‘β‰ 0 but π‘Žπ‘˜=0 for all π‘˜<βˆ’π‘. The index 𝑁 is the order of the pole. essential if π‘Žπ‘˜β‰ 0 for infinitely many π‘˜<0.

Types of Singularities

The following table illustrates this definition:

𝑧0 is a β‹―Laurent series in 0<|π‘§βˆ’π‘§0|<π‘Ÿ Removable singularityπ‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹― Pole of order π‘π‘Žβˆ’π‘(π‘§βˆ’π‘§0)𝑁+β‹―+π‘Žβˆ’1(π‘§βˆ’π‘§0)2+π‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹― Simple poleπ‘Žβˆ’1(π‘§βˆ’π‘§0)2+π‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹― Essential singularityβ‹―+π‘Žβˆ’2(π‘§βˆ’π‘§0)2+π‘Žβˆ’1(π‘§βˆ’π‘§0)2+π‘Ž0+π‘Ž1(π‘§βˆ’π‘§0)+π‘Ž2(π‘§βˆ’π‘§0)2+β‹―

Removable Singularities

Recall: 𝑧0 is a removable singularity of 𝑓 if its Laurent series, centered at 𝑧0 satisfies that π‘Žπ‘˜=0 for all π‘˜<0. Example: 𝑓(𝑧)=sin 𝑧𝑧=1βˆ’π‘§22!+𝑧44!βˆ’+β‹―, 0<|𝑧|<∞

The Laurent series looks like a Taylor series! Taylor series are analytic within their region of convergence. Thus, if we define 𝑓(𝑧) to have the value 1 at 𝑧0=0, then 𝑓 becomes analytic in β„‚: 𝑓(𝑧)={sin 𝑧𝑧,𝑧≠01 𝑧=0 is analytic in β„‚. The singularity have then been removed. Theorem (Riemann's Theorem)Let 𝑧0 be an isolated singularity of 𝑓. Then 𝑧0 is a removable singularity if and only if 𝑓 is bounded near 𝑧0


Recall: 𝑧0 is a pole of order 𝑁 of 𝑓 if its Laurent series, centered at 𝑧0 satisfies that π‘Žβˆ’π‘β‰ 0 and π‘Žπ‘˜=0 for all π‘˜<βˆ’π‘. Example: 𝑓(𝑧)=sin 𝑧𝑧5=1𝑧4βˆ’13!1𝑧2+15!βˆ’17!𝑧2+βˆ’β‹― has a pole of order 4 at 0 TheoremLet 𝑧0 be an isolated singularity of 𝑓. Then 𝑧0 is a pole if and only if |𝑓(𝑧)|β†’βˆž as 𝑧→𝑧0. Note: If 𝑓(𝑧) has a pole at 𝑧0 then 1𝑓(𝑧) has a removable singularity at 𝑧0 (and vice versa).

Essential Singularities

Recall: 𝑧0 is an essential singularity of 𝑓 if its Laurent series, centered at 𝑧0 satisfies that π‘Žπ‘˜β‰ 0 for infinitely many π‘˜<0. Example: 𝑓(𝑧)=β„―1𝑧=βˆžβˆ‘π‘˜=01π‘˜!1π‘§π‘˜=1+1𝑧+12!1𝑧2+13!1𝑧3+β‹― has an essential singularity at 𝑧0=0. Note that if 𝑧=π‘₯βˆˆβ„, then 𝑓(𝑧)=β„―1/π‘₯β†’βˆž as π‘₯β†’0 from the right and 𝑓(𝑧)=β„―1/π‘₯β†’0 as π‘₯β†’0 from the left.

Also, if 𝑧=𝑖π‘₯βˆˆπ‘–β„ the 𝑓(𝑧)=β„―1/𝑖π‘₯=β„―βˆ’π‘–/π‘₯ lies on the unit circle for all π‘₯ It appears that 𝑓 does not have a limit as 𝑧→𝑧0. Theorem (Casorati-Weierstra𝛽)Suppose that 𝑧0 is an essential singularity of 𝑓. Then for every 𝑀0βˆˆβ„‚ there exists a sequence {𝑧𝑛} with 𝑧𝑛→𝑧0 such that 𝑓(𝑧𝑛)→𝑀0 as π‘›β†’βˆž.


Casorati-Weierstra𝛽: Suppose that 𝑧0 is an essential singularity of 𝑓. Then for every 𝑀0βˆˆβ„‚ there exists a sequence {𝑧𝑛} with 𝑧𝑛→𝑧0 such that 𝑓(𝑧𝑛)→𝑀0. Example: Let 𝑓(𝑧)=β„―1𝑧. Then 𝑓 has an essential singularity at 0. Let's pick a point 𝑀0βˆˆβ„‚, say, 𝑀0βˆˆβ„‚=1+3𝑖. By Casorati-Weierstra𝛽 there must exist π‘§π‘›βˆˆβ„‚\{0} such that β„―1𝑧𝑛→1+3𝑖 as π‘›β†’βˆž. How do we find 𝑧𝑛 Idea: We can find 𝑧𝑛 such that β„―1𝑧𝑛=1+3𝑖, namely 1𝑧𝑛=log(1+3𝑖). Recall: log(𝑧)=ln(|𝑧|)+𝑖arg(𝑧). So log(1+3𝑖)=ln 2+π‘–πœ‹3+2π‘›πœ‹π‘–. Pick 𝑧𝑛=
ln 2+π‘–πœ‹3+2π‘›πœ‹π‘–
Then 𝑧𝑛→0 as π‘›β†’βˆž. Furthermore: β„―1𝑧𝑛=β„―ln 2+π‘–πœ‹3+2π‘›πœ‹π‘–  =2β„―π‘–πœ‹3  =212+𝑖32  =1+3𝑖  =𝑀0 for all 𝑛 We thus found 𝑧𝑛 with 𝑧𝑛→0 such that 𝑓(𝑧𝑛)=𝑀0 for all 𝑛

Picard's Theorem

We just observed a much stronger result that is true (but much harder to prove) for essential singularities: Theorem (Picard)Suppose that 𝑧0 is an essential singularity of 𝑓. Then for every 𝑀0βˆˆβ„‚ with at most one excepton there exists a sequence {𝑧𝑛} with 𝑧𝑛→𝑧0 such that 𝑓(𝑧𝑛)=𝑀0.


𝑓(𝑧)=β„―1/𝑧 has an essential singularity at 𝑧0=0. Also, 𝑓(𝑧)β‰ 0 for all 𝑧, and so by Picard's theorem, for every 𝑀0β‰ 0 there must exist infnitely many 𝑧𝑛 with 𝑧𝑛→0 such that 𝑓(𝑧𝑛)=𝑀0.

Pick 𝑀0=1 for example. Then 𝑓(𝑧)=𝑀0 if β„―1/𝑧=1, that is 1𝑧=2π‘›πœ‹π‘– for some π‘›βˆˆβ„€. Now let 𝑧𝑛=12π‘›πœ‹π‘–. Then 𝑧𝑛→0 as π‘›β†’βˆž, and 𝑓(𝑧𝑛)=1 for all 𝑛.


ID: 190500008 Last Updated: 2019/5/8 Revision:


Home (5)



HBR (3)



Hobbies (7)


Chinese (1097)

English (336)

Reference (66)


Hardware (149)


Application (187)

Digitization (24)

Numeric (19)


Web (618)new




Knowledge Base

Common Color (SC)

Html Entity (Unicode) (SC)

Html 401 Special (SC)

OS (388)new

MS Windows

Windows10 (SC)

.NET Framework (SC)

DeskTop (7)



Formulas (8)

Number Theory (206)

Algebra (20)

Trigonometry (18)

Geometry (18)

Calculus (67)

Complex Analysis (21)


Tables (8)


Mechanics (1)

Rigid Bodies

Statics (92)

Dynamics (37)

Fluid (5)

Fluid Kinematics (5)


Process Control (1)

Acoustics (19)

FiniteElement (2)

Biology (1)

Geography (1)

Copyright © 2000-2019 Sideway . All rights reserved Disclaimers last modified on 10 Feb 2019