Sideway
output.to from Sideway
Draft for Information Only

Content

 Pythagorean Triples
 Algebraic Approach
 Higher Degree
 Source and Reference

Pythagorean Triples

image Pythagorean Triples: π‘₯2+𝑦2=𝑧2
If 𝑧≠0, π‘₯𝑧2+𝑦𝑧2=1β‡’a unit circle with rational solutions for the homogeneous polynomial. image

Algebraic Approach

β„š(𝑖)={π‘Ž+𝑏𝑖;π‘Ž,π‘βˆŠβ„š} is a field of number system that build the structure to the rational solutions of π‘₯2+𝑦2=1
β‡’π‘₯2+𝑦2=(π‘₯+𝑦𝑖)(π‘₯βˆ’π‘¦π‘–)=1 β‡’(π‘₯+𝑦𝑖)2(π‘₯βˆ’π‘¦π‘–)2=1 rasie to higher power β‡’((π‘₯2βˆ’π‘¦2)+(2π‘₯𝑦)𝑖)((π‘₯2βˆ’π‘¦2)βˆ’(2π‘₯𝑦)𝑖)=1 β‡’(π‘₯2βˆ’π‘¦2)2+(2π‘₯𝑦)2=1 structure of the equation is still preserved β‡’π‘₯4+𝑦4+2π‘₯2𝑦2=1 Similarly, (π‘₯2+𝑦2)2=1β‡’π‘₯4+𝑦4+2π‘₯2𝑦2=1
Solutions to the equation are
35,45, βˆ’725,2425, βˆ’5276255,βˆ’336625, 164833390625,354144390625, β‹―
The solutions to the equation can be expanded by combining more than one set of solutions through binary operation. {π‘₯2+𝑦2=(π‘₯+𝑦𝑖)(π‘₯βˆ’π‘¦π‘–)=1𝑧2+𝑀2=(𝑧+𝑀𝑖)(π‘§βˆ’π‘€π‘–)=1β‡’((π‘₯π‘§βˆ’π‘¦π‘€)+(π‘₯𝑀+𝑦𝑧)𝑖)((π‘₯π‘§βˆ’π‘¦π‘€)βˆ’(π‘₯𝑀+𝑦𝑧)𝑖)=1 β‡’(π‘₯π‘§βˆ’π‘¦π‘€)2+(π‘₯𝑀+𝑦𝑧)2=1 For example, 35,45 and 1213,513β‡’1665,6365 1665,6365 and 35,45β‡’βˆ’204325,253325 That is 𝑍={(π‘₯,𝑦)βˆŠβ„š2:π‘₯2+𝑦2=1} 𝑃(π‘₯,𝑦),𝑄(𝑀,𝑧)βˆŠπ‘β‡’π‘ƒβŠ•π‘„βˆŠπ‘, π‘ƒβŠ•π‘„=(π‘₯π‘§βˆ’π‘¦π‘€),(π‘₯𝑀+𝑦𝑧)) For binary operation:
  • π‘ƒβŠ•π‘„=π‘„βŠ•π‘ƒ
  • (π‘ƒβŠ•π‘„)βŠ•π‘…=π‘ƒβŠ•(π‘„βŠ•π‘…)
  • 𝐸=(1,0)β‡’πΈβŠ•π‘ƒ=𝑃

Higher Degree

Similar to second degree, Suppose (π‘₯+π‘¦βˆ›2+π‘§βˆ›22)(π‘₯+π‘¦βˆ›2𝜁+π‘§βˆ›22𝜁2)(π‘₯+π‘¦βˆ›2𝜁2+π‘§βˆ›22𝜁)=1 Let 𝜁3=1 and 𝜁2+𝜁+1=0, and 𝜁4= 𝜁3𝜁1=𝜁 β‡’π‘₯3+2𝑦3βˆ’6π‘₯𝑦𝑧+4𝑧3=1 β‡’{(π‘₯,𝑦,𝑧)}βˆŠβ„š3:π‘₯3+2𝑦3βˆ’6π‘₯𝑦𝑧+4𝑧3=1} For Higher Power (π‘₯+π‘¦βˆ›2+π‘§βˆ›22)n=2,3β‡’π‘₯'+𝑦'βˆ›2+𝑧'βˆ›22 (π‘₯+π‘¦βˆ›2𝜁+π‘§βˆ›22𝜁2)n=2,3β‡’π‘₯'+𝑦'βˆ›2𝜁+𝑧'βˆ›22𝜁2 By raise the equation to power of 2 (π‘₯+π‘¦βˆ›2+π‘§βˆ›22)2(π‘₯+π‘¦βˆ›2𝜁+π‘§βˆ›22𝜁2)2(π‘₯+π‘¦βˆ›2𝜁2+π‘§βˆ›22𝜁)2=1 β‡’(π‘₯'+𝑦'βˆ›2+𝑧'βˆ›22)(π‘₯'+𝑦'βˆ›2𝜁+𝑧'βˆ›22𝜁2)(π‘₯'+𝑦'βˆ›2𝜁2+𝑧'βˆ›22𝜁)=1 β‡’π‘₯'3+2𝑦'3βˆ’6π‘₯'𝑦'𝑧'+4𝑧'3=1 where {π‘₯'=π‘₯2+4𝑦𝑧𝑦'=𝑦2+2π‘₯𝑧𝑧'=2π‘₯𝑦+2𝑧2

Source and Reference

https://www.youtube.com/watch?v=nS6YwdKIIKA
https://www.youtube.com/watch?v=ABr3QisSAWQ

Β©sideway

ID: 201100015 Last Updated: 15/11/2020 Revision: 0 Ref:

close

References

  1. B. Joseph, 1978, University Mathematics: A Textbook for Students of Science & Engineering
  2. Wheatstone, C., 1854, On the Formation of Powers from Arithmetical Progressions
  3. Stroud, K.A., 2001, Engineering Mathematics
  4. Coolidge, J.L., 1949, The Story of The Binomial Theorem
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 337

Reference 67

Computer

Hardware 151

Software

Application 198

Digitization 25

Latex 9

Manim 122

Numeric 19

Programming

Web 285

Unicode 494

HTML 65

CSS 59

ASP.NET 194

OS 391

DeskTop 7

Python 23

Knowledge

Mathematics

Formulas 8

Algebra 29

Number Theory 206

Trigonometry 18

Geometry 21

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Physics

Electric 27

Biology 1

Geography 1


Copyright © 2000-2020 Sideway . All rights reserved Disclaimers last modified on 06 September 2019