Sideway
output.to from Sideway
Draft for Information Only

Content

Electric Field of a Ring
 Electric Field along axis of a Ring
 Electric Field along Axis of a disk
 Infinity Charged Plane
 Source and Reference

Electric Field of a Ring

image

Electric Field along axis of a Ring

image The electric field 𝐸 at ⟨0,0,π‘§βŸ© with radius π‘Ÿ due to charged particle at ⟨-π‘Ž,0,0⟩ is π‘Ÿ=βŸ¨π‘Ž,0,π‘§βŸ©β‡’|π‘Ÿ|=(π‘Ž2+𝑧2)1/2β‡’π‘Ÿ=π‘Ÿ|π‘Ÿ|=βŸ¨π‘Ž,0,π‘§βŸ©(π‘Ž2+𝑧2)1/2
𝐸 at ⟨0,0,π‘§βŸ©: 𝐸=14πœ‹πœ€0π‘ž|π‘Ÿ|2π‘Ÿ  =14πœ‹πœ€0π‘ž(π‘Ž2+𝑧2)βŸ¨π‘Ž,0,π‘§βŸ©(π‘Ž2+𝑧2)1/2=14πœ‹πœ€0π‘ž(π‘Ž2+𝑧2)3/2βŸ¨π‘Ž,0,π‘§βŸ©
The total electric field πΈπ‘‘π‘œπ‘‘ at ⟨0,0,π‘§βŸ© due to a ring of charged particles. By symmetry, the electric field πΈπ‘‘π‘œπ‘‘ πΈπ‘‘π‘œπ‘‘=β€‰β€‰βˆ‘aroundthe ringβˆ†πΈπ‘§π‘§
βˆ†πΈπ‘§=14πœ‹πœ€0π‘§βˆ†π‘ž(π‘Ž2+𝑧2)3/2
Let total net charge 𝑄 is uniformlly distributed on the ring with total length 𝐿 of radius π‘Ž. image The total electric field πΈπ‘‘π‘œπ‘‘ at ⟨0,0,π‘§βŸ© is 𝐿=2πœ‹π‘Ž; βˆ†π‘ž=𝑄2πœ‹π‘Žβˆ†πΏ=π‘„πΏβˆ†πΏ
βˆ†πΏ=π‘Žβˆ†πœƒβ‡’βˆ‘βˆ†πΏβ†’π‘Ž2πœ‹βˆ«0π‘‘πœƒ=2πœ‹π‘Ž=𝐿
β‡’βˆ†π‘ž=𝑄2πœ‹π‘Žπ‘Žβˆ†πœƒ=𝑄2πœ‹βˆ†πœƒ
β‡’βˆ‘βˆ†π‘žβ†’π‘„2πœ‹2πœ‹βˆ«0π‘‘πœƒ
β‡’πΈπ‘‘π‘œπ‘‘ 𝑧=14πœ‹πœ€0βˆ‘π‘§βˆ†π‘ž(π‘Ž2+𝑧2)3/2β†’14πœ‹πœ€0𝑄2πœ‹2πœ‹βˆ«0π‘§π‘‘πœƒ(π‘Ž2+𝑧2)3/2  =14πœ‹πœ€0𝑄2πœ‹π‘§(π‘Ž2+𝑧2)3/22πœ‹βˆ«0π‘‘πœƒ  =14πœ‹πœ€0𝑄𝑧(π‘Ž2+𝑧2)3/2

Electric Field along Axis of a disk

image The electric field 𝐸 at ⟨0,0,π‘§βŸ© with radius π‘Ÿ due to charged particle βˆ†π‘ž of βˆ†A=βˆ†π‘Žβˆ†πΏ at ⟨-π‘Ž,0,0⟩ is similar to that of a ring. image Let total net charge 𝑄 is uniformly distributed on the disk with total area 𝐴 of radius π‘Ž. Total 𝑄 in area A=πœ‹π‘Ž2
Elemental βˆ†π‘žπ‘– in area element βˆ†A𝑖=(π‘Žπ‘–βˆ†πœƒ)(βˆ†π‘Ž)
β‡’βˆ†π‘žπ‘–=π‘„πœ‹π‘Ž2βˆ†A𝑖=π‘„πœ‹π‘Ž2(π‘Žπ‘–βˆ†πœƒ)(βˆ†π‘Ž)
β‡’β€‰βˆ‘π‘–βˆ†π‘žπ‘–=β€‰βˆ‘π‘–π‘„πœ‹π‘Ž2βˆ†A𝑖=π‘„πœ‹π‘Ž2β€‰βˆ‘π‘–(π‘Žπ‘–βˆ†πœƒβˆ†π‘Ž)  =π‘„πœ‹π‘Ž2∬(π‘Žπ‘–π‘‘πœƒπ‘‘π‘Ž)=π‘„πœ‹π‘Ž2π‘Žβˆ«0π‘Žπ‘‘π‘Ž2πœ‹βˆ«0π‘‘πœƒ=π‘„πœ‹π‘Ž212π‘Ž22πœ‹=𝑄
β‡’πΈπ‘‘π‘œπ‘‘ 𝑧=14πœ‹πœ€0βˆ‘π‘§βˆ†π‘ž(π‘Ž2+𝑧2)3/2β†’14πœ‹πœ€0π‘„πœ‹π‘Ž2∬(π‘Žπ‘–π‘‘πœƒπ‘‘π‘Ž)𝑧(π‘Ž2+𝑧2)3/2  =14πœ‹πœ€0π‘„πœ‹π‘Ž2π‘Žβˆ«0π‘Žπ‘§(π‘Ž2+𝑧2)3/2π‘‘π‘Ž2πœ‹βˆ«0π‘‘πœƒ=14πœ‹πœ€0π‘„πœ‹π‘Ž21βˆ’π‘§π‘Ž2+𝑧22πœ‹  =12πœ€0π‘„πœ‹π‘Ž21βˆ’π‘§π‘Ž2+𝑧2 βˆ΄πΈπ‘‘π‘œπ‘‘ 𝑧=12πœ€0π‘„πœ‹π‘Ž21βˆ’π‘§π‘Ž2+𝑧2𝑧

Infinity Charged Plane

Assume π‘Ž go to infinity, e.g. π‘Žβ‰«π‘§ π‘Žβ†’βˆž; π‘„β†’βˆž β‡’π‘„πœ‹π‘Ž2=𝜎 charge per unit area
πΈπ‘‘π‘œπ‘‘ 𝑧=12πœ€0π‘„πœ‹π‘Ž21βˆ’π‘§π‘Ž2+𝑧2𝑧=12πœ€0𝜎1βˆ’0𝑧=𝜎2πœ€0𝑧
For two parallel opposite charged infinite plane image

Source and Reference

https://www.youtube.com/watch?v=WqSa620ln9M&list=PLZ6kagz8q0bvxaUKCe2RRvU_h7wtNNxxi&index=6


Β©sideway

ID: 191102202 Last Updated: 11/22/2019 Revision: 0


Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 337

Reference 68

Computer

Hardware 156

Software

Application 207

Digitization 25

Latex 35

Manim 203

Numeric 19

Programming

Web 285

Unicode 504

HTML 65

CSS 65

SVG 9

ASP.NET 270

OS 422

DeskTop 7

Python 66

Knowledge

Mathematics

Formulas 8

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 32

Coordinate Geometry 1

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2021 Sideway . All rights reserved Disclaimers last modified on 06 September 2019