Sideway
output.to from Sideway
Draft for Information Only

Content

Current Density and Conductivity
 Resistance
 Resistors in Series
 Resistors in Parallel
 Capacitor in Series
 Capacitor in Parallel
 Source and Reference

Current Density and Conductivity

The current density 𝐽 is the current per unit area 𝐴, 𝐼=|𝑞|𝑛𝐴𝑣=|𝑞|𝑛𝐴𝑢𝐸
𝐽𝐼𝐴=|𝑞|𝑛𝐴𝑢𝐸𝐴=|𝑞|𝑛𝑢𝐸
The conductivity 𝜎 is a mterial-dependent quantity. 𝐽=|𝑞|𝑛𝑢𝐸≡𝜎𝐸⇒𝜎=|𝑞|𝑛𝑢 Conductivity add, even for opposite sign charge carriers image That is 𝜎=|𝑞+|𝑛+𝑢++|𝑞|𝑛𝑢

Resistance

The resistance of a resistor of length 𝐿, ∆𝑉=−𝐸⋅𝑑𝑙⇒|∆𝑉|=𝐸𝐿
𝐼=𝑞𝑛𝐴𝑢𝐸=𝜎𝐴𝐸
𝐼=𝜎𝐴𝐸=𝜎𝐴|∆𝑉|𝐿⇒|∆𝑉|=𝐼𝐿𝜎𝐴
∵|∆𝑉|=𝐼𝑅⇒𝑅=𝐿𝜎𝐴

Resistors in Series

image When resistors are in series, the effective series resistance is 𝐼=𝐼1=𝐼2
∆𝑉emf+∆𝑉1+∆𝑉2=0
⇒𝑉emf−𝐼𝑅1−𝐼𝑅2=0
⇒𝑉emf=𝐼𝑅1+𝐼𝑅2=𝐼(𝑅1+𝑅2)=𝐼𝑅equivalent
⇒𝑅equivalent=𝑅1+𝑅2
For resistor made of the same material and with the same 𝐴, the resistance follows straight from the definition of resistance 𝑅=𝐿𝜎𝐴 𝑅equivalent=𝐿1𝜎𝐴+𝐿2𝜎𝐴=𝐿1+𝐿2𝜎𝐴=𝐿equivalent𝜎𝐴
⇒𝐿equivalent=𝐿1+𝐿2

Resistors in Parallel

image When resistors are in parallel, the effective parallel resistance is 𝐼=𝐼1+𝐼2=𝑉emf𝑅1+𝑉emf𝑅2=1𝑅1+1𝑅2𝑉emf=1𝑅equivalent𝑉emf
1𝑅equivalent=1𝑅1+1𝑅2=𝑅1+𝑅1𝑅1𝑅1
For resistor made of the same material and with the same 𝐿, the resistance follows straight from the definition of resistance 𝑅=𝐿𝜎𝐴 𝑅=𝐿𝜎𝐴1𝑅=𝜎𝐴𝐿
1𝑅equivalent=𝜎𝐴1𝐿+𝜎𝐴1𝐿=𝜎𝐿(𝐴1+𝐴2)=𝜎𝐿𝐴equivalent
⇒𝐴equivalent=𝐴1+𝐴2

Capacitor in Series

image When capacitors are in series, the effective series capacitance is 𝐼=𝐼1=𝐼2⇒𝑄1=𝑄2=𝑄
∆𝑉emf+∆𝑉1+∆𝑉2=0
⇒𝑉emf𝑄𝐶1𝑄𝐶2=0
⇒𝑉emf=𝑄𝐶1+𝑄𝐶2=𝑄1𝐶1+1𝐶2=𝑄1𝐶equivalent
1𝐶equivalent=1𝐶1+1𝐶2=𝐶1+𝐶2𝐶1𝐶2
For capacitor made of the same material and with the same 𝐴, the capacitance follows straight from the definition of capacitance 𝐶=𝜀0𝐴𝑠 𝐶=𝜀0𝐴𝑠1𝐶=𝑠𝜀0𝐴
1𝐶equivalent=𝑠1𝜀0𝐴+𝑠2𝜀0𝐴=1𝜀0𝐴(𝑠1+𝑠2)=1𝜀0𝐴𝑠equivalent
⇒𝑠equivalent=𝑠1+𝑠2

Capacitor in Parallel

image When capacitors are in parallel, the effective parallel capacitance is 𝐼=𝐼1+𝐼2⇒𝑄=𝑄1+𝑄2
⇒𝐶equivalent𝑉emf=𝐶1𝑉emf+𝐶2𝑉emf
⇒𝐶equivalent=𝐶1+𝐶2
For capacitor made of the same material and with the same 𝑠, the capacitance follows straight from the definition of capacitance 𝐶=𝜀0𝐴𝑠 𝐶equivalent=𝜀0𝐴1𝑠+𝜀0𝐴2𝑠=𝜀0𝑠(𝐴1+𝐴2)=𝜀0𝑠𝐴equivalent
⇒𝐴equivalent=𝐴1+𝐴2

Source and Reference

https://www.youtube.com/watch?v=C0hFkY2G4y4&list=PLZ6kagz8q0bvxaUKCe2RRvU_h7wtNNxxi&index=18

©sideway

ID: 200100502 Last Updated: 1/5/2020 Revision: 0

IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 337

Reference 68

Computer

Hardware 154

Software

Application 207

Digitization 25

Latex 35

Manim 203

Numeric 19

Programming

Web 285

Unicode 504

HTML 65

CSS 63

SVG 9

ASP.NET 240

OS 422

DeskTop 7

Python 64

Knowledge

Mathematics

Formulas 8

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 32

Coordinate Geometry 1

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2021 Sideway . All rights reserved Disclaimers last modified on 06 September 2019