 output.to from Sideway
Draft for Information Only

# Content

`Current Density and Conductivity Resistance Resistors in Series Resistors in Parallel Capacitor in Series Capacitor in Parallel Source and Reference`

# Current Density and Conductivity

The current density 𝐽 is the current per unit area 𝐴, ```𝐼=|𝑞|𝑛𝐴𝑣=|𝑞|𝑛𝐴𝑢𝐸 𝐽≡𝐼𝐴=|𝑞|𝑛𝐴𝑢𝐸𝐴=|𝑞|𝑛𝑢𝐸 ``` The conductivity 𝜎 is a mterial-dependent quantity. `𝐽=|𝑞|𝑛𝑢𝐸≡𝜎𝐸⇒𝜎=|𝑞|𝑛𝑢` Conductivity add, even for opposite sign charge carriers That is `𝜎=|𝑞+|𝑛+𝑢++|𝑞−|𝑛−𝑢−`

## Resistance

The resistance of a resistor of length 𝐿, ```∆𝑉=−∫𝐸⋅𝑑𝑙⇒|∆𝑉|=𝐸𝐿 𝐼=𝑞𝑛𝐴𝑢𝐸=𝜎𝐴𝐸 𝐼=𝜎𝐴𝐸=𝜎𝐴|∆𝑉|𝐿⇒|∆𝑉|=𝐼𝐿𝜎𝐴 ∵|∆𝑉|=𝐼𝑅⇒𝑅=𝐿𝜎𝐴 ```

## Resistors in Series When resistors are in series, the effective series resistance is ```𝐼=𝐼1=𝐼2 ∆𝑉emf+∆𝑉1+∆𝑉2=0 ⇒𝑉emf−𝐼𝑅1−𝐼𝑅2=0 ⇒𝑉emf=𝐼𝑅1+𝐼𝑅2=𝐼(𝑅1+𝑅2)=𝐼𝑅equivalent ⇒𝑅equivalent=𝑅1+𝑅2``` For resistor made of the same material and with the same 𝐴, the resistance follows straight from the definition of resistance 𝑅=𝐿𝜎𝐴 ```𝑅equivalent=𝐿1𝜎𝐴+𝐿2𝜎𝐴=𝐿1+𝐿2𝜎𝐴=𝐿equivalent𝜎𝐴 ⇒𝐿equivalent=𝐿1+𝐿2```

## Resistors in Parallel When resistors are in parallel, the effective parallel resistance is ```𝐼=𝐼1+𝐼2=𝑉emf𝑅1+𝑉emf𝑅2=1𝑅1+1𝑅2𝑉emf=1𝑅equivalent𝑉emf ⇒1𝑅equivalent=1𝑅1+1𝑅2=𝑅1+𝑅1𝑅1𝑅1 ``` For resistor made of the same material and with the same 𝐿, the resistance follows straight from the definition of resistance 𝑅=𝐿𝜎𝐴 ```𝑅=𝐿𝜎𝐴⇒1𝑅=𝜎𝐴𝐿 ⇒1𝑅equivalent=𝜎𝐴1𝐿+𝜎𝐴1𝐿=𝜎𝐿(𝐴1+𝐴2)=𝜎𝐿𝐴equivalent ⇒𝐴equivalent=𝐴1+𝐴2 ```

## Capacitor in Series When capacitors are in series, the effective series capacitance is ```𝐼=𝐼1=𝐼2⇒𝑄1=𝑄2=𝑄 ∆𝑉emf+∆𝑉1+∆𝑉2=0 ⇒𝑉emf−𝑄𝐶1−𝑄𝐶2=0 ⇒𝑉emf=𝑄𝐶1+𝑄𝐶2=𝑄1𝐶1+1𝐶2=𝑄1𝐶equivalent ⇒1𝐶equivalent=1𝐶1+1𝐶2=𝐶1+𝐶2𝐶1𝐶2 ``` For capacitor made of the same material and with the same 𝐴, the capacitance follows straight from the definition of capacitance 𝐶=𝜀0𝐴𝑠 ```𝐶=𝜀0𝐴𝑠⇒1𝐶=𝑠𝜀0𝐴 ⇒1𝐶equivalent=𝑠1𝜀0𝐴+𝑠2𝜀0𝐴=1𝜀0𝐴(𝑠1+𝑠2)=1𝜀0𝐴𝑠equivalent ⇒𝑠equivalent=𝑠1+𝑠2 ```

## Capacitor in Parallel When capacitors are in parallel, the effective parallel capacitance is ```𝐼=𝐼1+𝐼2⇒𝑄=𝑄1+𝑄2 ⇒𝐶equivalent𝑉emf=𝐶1𝑉emf+𝐶2𝑉emf ⇒𝐶equivalent=𝐶1+𝐶2``` For capacitor made of the same material and with the same 𝑠, the capacitance follows straight from the definition of capacitance 𝐶=𝜀0𝐴𝑠 ```𝐶equivalent=𝜀0𝐴1𝑠+𝜀0𝐴2𝑠=𝜀0𝑠(𝐴1+𝐴2)=𝜀0𝑠𝐴equivalent ⇒𝐴equivalent=𝐴1+𝐴2 ```

## Source and Reference

ID: 200100502 Last Updated: 5/1/2020 Revision: 0 Home 5

Management

HBR 3

Information

Recreation

Culture

Chinese 1097

English 337

Computer

Hardware 151

Software

Application 198

Manim 121

Numeric 19

Programming

Web 283

Unicode 494

HTML 65

CSS 58

ASP.NET 174

OS 389

Python 19

Knowledge

Mathematics

Algebra 25

Geometry 21

Calculus 67

Engineering

Mechanical

Rigid Bodies

Statics 92

Dynamics 37

Control

Physics

Electric 27